Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 64
1.
bioRxiv ; 2024 May 04.
Article En | MEDLINE | ID: mdl-38746348

Receptor tyrosine kinases (RTKs) regulate many cellular functions and are important targets in pharmaceutical development, particularly in cancer treatment. EGFR and EphA2 are two key RTKs that are associated with oncogenic phenotypes. Several studies have reported functional interplay between these receptors, but the mechanism of interaction is still unresolved. Here we utilize a time-resolved fluorescence spectroscopy called PIE-FCCS to resolve EGFR and EphA2 interactions in live cells. We tested the role of ligands and found that EGF, but not ephrin A1 (EA1), stimulated hetero-multimerization between the receptors. To determine the effect of anionic lipids, we targeted phospholipase C (PLC) activity to alter the abundance of phosphatidylinositol (4,5)-bisphosphate (PIP 2 ). We found that higher PIP 2 levels increased homo-multimerization of both EGFR and EphA2, as well as hetero-multimerization. This study provides a direct characterization of EGFR and EphA2 interactions in live cells and shows that PIP 2 can have a substantial effect on the spatial organization of RTKs.

2.
Elife ; 122023 10 05.
Article En | MEDLINE | ID: mdl-37796108

The T cell receptor (TCR) is a complex molecular machine that directs the activation of T cells, allowing the immune system to fight pathogens and cancer cells. Despite decades of investigation, the molecular mechanism of TCR activation is still controversial. One of the leading activation hypotheses is the allosteric model. This model posits that binding of pMHC at the extracellular domain triggers a dynamic change in the transmembrane (TM) domain of the TCR subunits, which leads to signaling at the cytoplasmic side. We sought to test this hypothesis by creating a TM ligand for TCR. Previously we described a method to create a soluble peptide capable of inserting into membranes and binding to the TM domain of the receptor tyrosine kinase EphA2 (Alves et al., eLife, 2018). Here, we show that the approach is generalizable to complex membrane receptors, by designing a TM ligand for TCR. We observed that the designed peptide caused a reduction of Lck phosphorylation of TCR at the CD3ζ subunit in T cells. As a result, in the presence of this peptide inhibitor of TCR (PITCR), the proximal signaling cascade downstream of TCR activation was significantly dampened. Co-localization and co-immunoprecipitation in diisobutylene maleic acid (DIBMA) native nanodiscs confirmed that PITCR was able to bind to the TCR. AlphaFold-Multimer predicted that PITCR binds to the TM region of TCR, where it interacts with the two CD3ζ subunits. Our results additionally indicate that PITCR disrupts the allosteric changes in the compactness of the TM bundle that occur upon TCR activation, lending support to the allosteric TCR activation model. The TCR inhibition achieved by PITCR might be useful to treat inflammatory and autoimmune diseases and to prevent organ transplant rejection, as in these conditions aberrant activation of TCR contributes to disease.


Receptors, Antigen, T-Cell , T-Lymphocytes , Ligands , Receptors, Antigen, T-Cell/metabolism , Phosphorylation , Peptides/pharmacology , Peptides/metabolism
3.
ACS Nano ; 17(19): 18979-18999, 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37702397

Photodynamic therapy (PDT) and photothermal therapy (PTT) have gained considerable attention as potential alternatives to conventional cancer treatments. However, these approaches remain limited by low solubility, poor stability, and inefficient targeting of many common photosensitizers (PSs) and photothermal agents (PTAs). To overcome the aforementioned limitations, we engineered biocompatible and biodegradable tumor-targeted upconversion nanospheres with imaging capabilities. The multifunctional nanospheres consist of a sodium yttrium fluoride core doped with lanthanides (ytterbium, erbium, and gadolinium) and the PTA bismuth selenide (NaYF4:Yb/Er/Gd,Bi2Se3) enveloped in a mesoporous silica shell that encapsulates a PS, chlorin e6 (Ce6), within its pores. NaYF4:Yb/Er converts deeply penetrating near-infrared (NIR) light to visible light, which excites Ce6 to generate cytotoxic reactive oxygen species (ROS), while Bi2Se3 efficiently converts absorbed NIR light to heat. Additionally, Gd enables magnetic resonance imaging of the nanospheres. The mesoporous silica shell is coated with DPPC/cholesterol/DSPE-PEG to retain the encapsulated Ce6 and prevent serum protein adsorption and macrophage recognition that hinder tumor targeting. Finally, the coat is conjugated to the acidity-triggered rational membrane (ATRAM) peptide, which promotes specific and efficient internalization into malignant cells in the mildly acidic microenvironment of tumors. The nanospheres facilitated tumor magnetic resonance and thermal and fluorescence imaging and exhibited potent NIR laser light-induced anticancer effects in vitro and in vivo via combined ROS production and localized hyperthermia, with negligible toxicity to healthy tissue, hence markedly extending survival. Our results demonstrate that the ATRAM-functionalized, lipid/PEG-coated upconversion mesoporous silica nanospheres (ALUMSNs) offer multimodal diagnostic imaging and targeted combinatorial cancer therapy.

4.
bioRxiv ; 2023 May 24.
Article En | MEDLINE | ID: mdl-37292655

Photodynamic therapy (PDT) and photothermal therapy (PTT) have garnered considerable interest as non-invasive cancer treatment modalities. However, these approaches remain limited by low solubility, poor stability and inefficient targeting of many common photosensitizers (PSs) and photothermal agents (PTAs). To overcome these limitations, we have designed biocompatible and biodegradable tumor-targeted upconversion nanospheres with imaging capabilities. The multifunctional nanospheres consist of a sodium yttrium fluoride core doped with lanthanides (ytterbium, erbium and gadolinium) and bismuth selenide (NaYF 4 :Yb/Er/Gd,Bi 2 Se 3 ) within a mesoporous silica shell that encapsulates a PS, Chlorin e6 (Ce6), in its pores. NaYF 4 :Yb/Er converts deeply penetrating near-infrared (NIR) light to visible light, which excites the Ce6 to generate cytotoxic reactive oxygen species (ROS), while the PTA Bi 2 Se 3 efficiently converts absorbed NIR light to heat. Additionally, Gd enables magnetic resonance imaging (MRI) of the nanospheres. The mesoporous silica shell is coated with lipid/polyethylene glycol (DPPC/cholesterol/DSPE-PEG) to ensure retention of the encapsulated Ce6 and minimize interactions with serum proteins and macrophages that impede tumor targeting. Finally, the coat is functionalized with the acidity-triggered rational membrane (ATRAM) peptide, which promotes specific and efficient internalization into cancer cells within the mildly acidic tumor microenvironment. Following uptake by cancer cells in vitro , NIR laser irradiation of the nanospheres caused substantial cytotoxicity due to ROS production and hyperthermia. The nanospheres facilitated tumor MRI and thermal imaging, and exhibited potent NIR laser light-induced antitumor effects in vivo via combined PDT and PTT, with no observable toxicity to healthy tissue, thereby substantially prolonging survival. Our results demonstrate that the ATRAM-functionalized, lipid/PEG-coated upconversion mesoporous silica nanospheres (ALUMSNs) offer multimodal diagnostic imaging and targeted combinatorial cancer therapy.

5.
J Biol Chem ; 299(7): 104914, 2023 07.
Article En | MEDLINE | ID: mdl-37315787

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) commonly targeted for inhibition by anticancer therapeutics. Current therapeutics target EGFR's kinase domain or extracellular region. However, these types of inhibitors are not specific for tumors over healthy tissue and therefore cause undesirable side effects. Our lab has recently developed a new strategy to regulate RTK activity by designing a peptide that specifically binds to the transmembrane (TM) region of the RTK to allosterically modify kinase activity. These peptides are acidity-responsive, allowing them to preferentially target acidic environments like tumors. We have applied this strategy to EGFR and created the PET1 peptide. We observed that PET1 behaves as a pH-responsive peptide that modulates the configuration of the EGFR TM through a direct interaction. Our data indicated that PET1 inhibits EGFR-mediated cell migration. Finally, we investigated the mechanism of inhibition through molecular dynamics simulations, which showed that PET1 sits between the two EGFR TM helices; this molecular mechanism was additionally supported by AlphaFold-Multimer predictions. We propose that the PET1-induced disruption of native TM interactions disturbs the conformation of the kinase domain in such a way that it inhibits EGFR's ability to send migratory cell signals. This study is a proof-of-concept that acidity-responsive membrane peptide ligands can be generally applied to RTKs. In addition, PET1 constitutes a viable approach to therapeutically target the TM of EGFR.


Allosteric Regulation , Cell Membrane , ErbB Receptors , Peptides , Humans , Epidermal Growth Factor/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation/drug effects , Protein Structure, Secondary/drug effects , Receptor Protein-Tyrosine Kinases/metabolism , Allosteric Regulation/drug effects , Cell Membrane/chemistry , Cell Membrane/metabolism , Hydrogen-Ion Concentration , Peptides/pharmacology , Cell Movement/drug effects , Protein Domains/drug effects , Antineoplastic Agents/pharmacology
6.
MRS Bull ; 48(1): 13-21, 2023.
Article En | MEDLINE | ID: mdl-36908998

Abstract: In biology, heterosynaptic plasticity maintains homeostasis in synaptic inputs during associative learning and memory, and initiates long-term changes in synaptic strengths that nonspecifically modulate different synapse types. In bioinspired neuromorphic circuits, heterosynaptic plasticity may be used to extend the functionality of two-terminal, biomimetic memristors. In this article, we explore how changes in the pH of droplet interface bilayer aqueous solutions modulate the memristive responses of a lipid bilayer membrane in the pH range 4.97-7.40. Surprisingly, we did not find conclusive evidence for pH-dependent shifts in the voltage thresholds (V*) needed for alamethicin ion channel formation in the membrane. However, we did observe a clear modulation in the dynamics of pore formation with pH in time-dependent, pulsed voltage experiments. Moreover, at the same voltage, lowering the pH resulted in higher steady-state currents because of increased numbers of conductive peptide ion channels in the membrane. This was due to increased partitioning of alamethicin monomers into the membrane at pH 4.97, which is below the pKa (~5.3-5.7) of carboxylate groups on the glutamate residues of the peptide, making the monomers more hydrophobic. Neutralization of the negative charges on these residues, under acidic conditions, increased the concentration of peptide monomers in the membrane, shifting the equilibrium concentrations of peptide aggregate assemblies in the membrane to favor greater numbers of larger, increasingly more conductive pores. It also increased the relaxation time constants for pore formation and decay, and enhanced short-term facilitation and depression of the switching characteristics of the device. Modulating these thresholds globally and independently of alamethicin concentration and applied voltage will enable the assembly of neuromorphic computational circuitry with enhanced functionality. Impact statement: We describe how to use pH as a modulatory "interneuron" that changes the voltage-dependent memristance of alamethicin ion channels in lipid bilayers by changing the structure and dynamical properties of the bilayer. Having the ability to independently control the threshold levels for pore conduction from voltage or ion channel concentration enables additional levels of programmability in a neuromorphic system. In this article, we note that barriers to conduction from membrane-bound ion channels can be lowered by reducing solution pH, resulting in higher currents, and enhanced short-term learning behavior in the form of paired-pulse facilitation. Tuning threshold values with environmental variables, such as pH, provide additional training and learning algorithms that can be used to elicit complex functionality within spiking neural networks. Supplementary information: The online version contains supplementary material available at 10.1557/s43577-022-00344-z.

7.
ACS Chem Biol ; 18(2): 377-384, 2023 02 17.
Article En | MEDLINE | ID: mdl-36745020

Phosphatidylserine (PS) is a key lipid that plays important roles in disease-related biological processes, and therefore, the means to track PS in live cells are invaluable. Herein, we describe the metabolic labeling of PS in Saccharomyces cerevisiae cells using analogues of serine, a PS precursor, derivatized with azide moieties at either the amino (N-l-SerN3) or carbonyl (C-l-SerN3) groups. The conservative click tag modification enabled these compounds to infiltrate normal lipid biosynthetic pathways, thereby producing tagged PS molecules as supported by mass spectrometry studies, thin-layer chromatography (TLC) analysis, and further derivatization with fluorescent reporters via click chemistry to enable imaging in yeast cells. This approach shows strong prospects for elucidating the complex biosynthetic and trafficking pathways involving PS.


Phosphatidylserines , Saccharomyces cerevisiae , Phosphatidylserines/metabolism , Saccharomyces cerevisiae/metabolism , Click Chemistry
8.
J Biol Chem ; 299(2): 102829, 2023 02.
Article En | MEDLINE | ID: mdl-36581211

Candida albicans is a deadly pathogen responsible for millions of mucosal and systemic infections per year. The pathobiology of C. albicans is largely dependent on the damaging and immunostimulatory properties of the peptide candidalysin (CL), a key virulence factor. When CL forms pores in the plasma membrane of epithelial cells, it activates a response network grounded in activation of the epidermal growth factor receptor. Prior reviews have characterized the resulting CL immune activation schemas but lacked insights into the molecular mechanism of CL membrane damage. We recently demonstrated that CL functions by undergoing a unique self-assembly process; CL forms polymers and loops in aqueous solution prior to inserting and forming pores in cell membranes. This mechanism, the first of its kind to be observed, informs new therapeutic avenues to treat Candida infections. Recently, variants of CL were identified in other Candida species, providing an opportunity to identify the residues that are key for CL to function. In this review, we connect the ability of CL to damage cell membranes to its immunostimulatory properties.


Candida albicans , Fungal Proteins , Virulence Factors , Candida albicans/chemistry , Fungal Proteins/chemistry , Virulence Factors/chemistry
9.
Elife ; 112022 09 29.
Article En | MEDLINE | ID: mdl-36173096

Candida albicans causes severe invasive candidiasis. C. albicans infection requires the virulence factor candidalysin (CL) which damages target cell membranes. However, the mechanism that CL uses to permeabilize membranes is unclear. We reveal that CL forms membrane pores using a unique mechanism. Unexpectedly, CL readily assembled into polymers in solution. We propose that the basic structural unit in polymer formation is a CL oligomer, which is sequentially added into a string configuration that can close into a loop. CL loops appear to spontaneously insert into the membrane to become pores. A CL mutation (G4W) inhibited the formation of polymers in solution and prevented pore formation in synthetic lipid systems. Epithelial cell studies showed that G4W CL failed to activate the danger response pathway, a hallmark of the pathogenic effect of CL. These results indicate that CL polymerization in solution is a necessary step for the damage of cellular membranes. Analysis of CL pores by atomic force microscopy revealed co-existence of simple depressions and more complex pores, which are likely formed by CL assembled in an alternate oligomer orientation. We propose that this structural rearrangement represents a maturation mechanism that stabilizes pore formation to achieve more robust cellular damage. To summarize, CL uses a previously unknown mechanism to damage membranes, whereby pre-assembly of CL loops in solution leads to formation of membrane pores. Our investigation not only unravels a new paradigm for the formation of membrane pores, but additionally identifies CL polymerization as a novel therapeutic target to treat candidiasis.


The fungus Candida albicans is the most common cause of yeast infections in humans. Like many other disease-causing microbes, it releases several virulent proteins that invade and damage human cells. This includes the peptide candidalysin which has been shown to be crucial for infection. Human cells are surrounded by a protective membrane that separates their interior from their external environment. Previous work showed that candidalysin damages the cell membrane to promote infection. However, how candidalysin does this remained unclear. Similar peptides and proteins cause harm by inserting themselves into the membrane and then grouping together to form a ring. This creates a hole, or 'pore', that weakens the membrane and allows other molecules into the cell's interior. Here, Russell, Schaefer et al. show that candidalysin uses a unique pore forming mechanism to impair the membrane of human cells. A combination of biophysical and cell biology techniques revealed that the peptide groups together to form a chain. This chain of candidalysin proteins then closes in on itself to create a loop structure that can insert into the membrane to form a pore. Once embedded within the membrane, the proteins within the loops rearrange again to make the pores more stable so they can cause greater damage. This type of pore formation has not been observed before, and may open up new avenues of research. For instance, researchers could use this information to develop inhibitors that stop candidalysin from forming chains and harming the membranes of cells. This could help treat the infections caused by C. albicans.


Candida albicans , Virulence Factors , Candida albicans/genetics , Epithelial Cells/metabolism , Fungal Proteins , Lipids , Polymers/metabolism , Virulence Factors/metabolism
10.
J Am Chem Soc ; 144(8): 3746-3756, 2022 03 02.
Article En | MEDLINE | ID: mdl-35171601

Liposomal delivery vehicles can dramatically enhance drug transport. However, their clinical application requires enhanced control over content release at diseased sites. For this reason, triggered release strategies have been explored, although a limited toolbox of stimuli has thus far been developed. Here, we report a novel strategy for stimuli-responsive liposomes that release encapsulated contents in the presence of phosphorylated small molecules. Our formulation efforts culminated in selective cargo release driven by ATP, a universal energy source that is upregulated in diseases such as cancer. Specifically, we developed lipid switches 1a-b bearing two ZnDPA units designed to undergo substantial conformational changes upon ATP binding, thereby disrupting membrane packing and triggering the release of encapsulated contents. Dye leakage assays using the hydrophobic dye Nile red validated that ATP-driven release was selective over 11 similar phosphorylated metabolites, and release of the hydrophilic dye calcein was also achieved. Multiple alternative lipid switch structures were synthesized and studied (1c-d and 2), which provided insights into the structural features that render 1a-b selective toward ATP-driven release. Importantly, analysis of cellular delivery using fluorescence microscopy in conjunction with pharmacological ATP manipulation showed that liposome delivery was specific, as it increased upon intracellular ATP accumulation, and was inhibited by ATP downregulation. Our new approach shows strong prospects for enhancing the selectivity of release and payload delivery to diseased cells driven by metabolites such as ATP, providing an exciting new paradigm for controlled release.


Lipids , Liposomes , Adenosine Triphosphate , Lipids/chemistry , Liposomes/chemistry
11.
Arch Biochem Biophys ; 726: 109114, 2022 09 15.
Article En | MEDLINE | ID: mdl-34973205

In 1987, Susi & Byler published a groundbreaking paper for the determination of the secondary structure of proteins. Notably, they determined the characteristic signature of the ß-strand in the infrared spectrum. As a result, Fourier-transform infrared spectroscopy became a general method to determine protein structure.


Proteins , Fourier Analysis , Protein Structure, Secondary , Proteins/chemistry , Spectroscopy, Fourier Transform Infrared
13.
PLoS Pathog ; 17(9): e1009884, 2021 09.
Article En | MEDLINE | ID: mdl-34506615

Vulvovaginal candidiasis (VVC), caused primarily by the human fungal pathogen Candida albicans, results in significant quality-of-life issues for women worldwide. Candidalysin, a toxin derived from a polypeptide (Ece1p) encoded by the ECE1 gene, plays a crucial role in driving immunopathology at the vaginal mucosa. This study aimed to determine if expression and/or processing of Ece1p differs across C. albicans isolates and whether this partly underlies differential pathogenicity observed clinically. Using a targeted sequencing approach, we determined that isolate 529L harbors a similarly expressed, yet distinct Ece1p isoform variant that encodes for a predicted functional candidalysin; this isoform was conserved amongst a collection of clinical isolates. Expression of the ECE1 open reading frame (ORF) from 529L in an SC5314-derived ece1Δ/Δ strain resulted in significantly reduced vaginopathogenicity as compared to an isogenic control expressing a wild-type (WT) ECE1 allele. However, in vitro challenge of vaginal epithelial cells with synthetic candidalysin demonstrated similar toxigenic activity amongst SC5314 and 529L isoforms. Creation of an isogenic panel of chimeric strains harboring swapped Ece1p peptides or HiBiT tags revealed reduced secretion with the ORF from 529L that was associated with reduced virulence. A genetic survey of 78 clinical isolates demonstrated a conserved pattern between Ece1p P2 and P3 sequences, suggesting that substrate specificity around Kex2p-mediated KR cleavage sites involved in protein processing may contribute to differential pathogenicity amongst clinical isolates. Therefore, we present a new mechanism for attenuation of C. albicans virulence at the ECE1 locus.


Candida albicans/genetics , Candidiasis, Vulvovaginal/microbiology , Fungal Proteins/genetics , Alleles , Animals , Candida albicans/pathogenicity , Female , Genetic Variation , Humans , Mice , Virulence
14.
Faraday Discuss ; 232(0): 114-130, 2021 12 24.
Article En | MEDLINE | ID: mdl-34549736

Intrinsic apoptosis is orchestrated by a group of proteins that mediate the coordinated disruption of mitochondrial membranes. Bax is a multi-domain protein that, upon activation, disrupts the integrity of the mitochondrial outer membrane by forming pores. We strategically introduced glutamic acids into a short sequence of the Bax protein that constitutively creates membrane pores. The resulting BaxE5 peptide efficiently permeabilizes membranes at acidic pH, showing low permeabilization at neutral pH. Atomic force microscopy (AFM) imaging showed that at acidic pH BaxE5 established several membrane remodeling modalities that progressively disturbed the integrity of the lipid bilayer. The AFM data offers vistas on the membrane disruption process, which starts with pore formation and progresses through localized exposure of membrane monolayers leading to stable and small (height ∼ 16 Å) lipid-peptide complexes. The different types of membrane morphology observed in the presence of BaxE5 suggest that the peptide can establish different types of membrane interactions. BaxE5 adopts a rare unstructured conformation when bound to membranes, which might facilitate the dynamic transition between those different states, and then promote membrane digestion.


Lipid Bilayers , Mitochondrial Membranes , Apoptosis , Microscopy, Atomic Force , bcl-2-Associated X Protein
15.
Biochem Soc Trans ; 49(4): 1685-1694, 2021 08 27.
Article En | MEDLINE | ID: mdl-34346484

The study of membrane proteins is undergoing a golden era, and we are gaining unprecedented knowledge on how this key group of proteins works. However, we still have only a basic understanding of how the chemical composition and the physical properties of lipid bilayers control the activity of membrane proteins. Single-molecule (SM) fluorescence methods can resolve sample heterogeneity, allowing to discriminate between the different molecular populations that biological systems often adopt. This short review highlights relevant examples of how SM fluorescence methodologies can illuminate the different ways in which lipids regulate the activity of membrane proteins. These studies are not limited to lipid molecules acting as ligands, but also consider how the physical properties of the bilayer can be determining factors on how membrane proteins function.


Lipid Bilayers/metabolism , Lipid Metabolism , Membrane Proteins/metabolism , Single Molecule Imaging/methods , Dimerization , Fluorescence , Membrane Proteins/chemistry , Protein Conformation
16.
J Mol Biol ; 433(18): 167144, 2021 09 03.
Article En | MEDLINE | ID: mdl-34229012

The EphA2 receptor is a promising drug target for cancer treatment, since EphA2 activation can inhibit metastasis and tumor progression. It has been recently described that the TYPE7 peptide activates EphA2 using a novel mechanism that involves binding to the single transmembrane domain of the receptor. TYPE7 is a conditional transmembrane (TM) ligand, which only inserts into membranes at neutral pH in the presence of the TM region of EphA2. However, how membrane interactions can activate EphA2 is not known. We systematically altered the sequence of TYPE7 to identify the binding motif used to activate EphA2. With the resulting six peptides, we performed biophysical and cell migration assays that identified a new potent peptide variant. We also performed a mutational screen that determined the helical interface that mediates dimerization of the TM domain of EphA2 in cells. These results, together with molecular dynamic simulations, allowed to elucidate the molecular mechanism that TYPE7 uses to activate EphA2, where the membrane peptide acts as a molecular clamp that wraps around the TM dimer of the receptor. We propose that this binding mode stabilizes the active conformation of EphA2. Our data, additionally, provide clues into the properties that TM ligands need to have in order to achieve activation of membrane receptors.


Melanoma/pathology , Membrane Proteins/metabolism , Membranes/metabolism , Peptide Fragments/metabolism , Protein Conformation , Receptor, EphA2/metabolism , Amino Acid Sequence , Binding Sites , Cell Movement , Humans , Ligands , Melanoma/metabolism , Membrane Proteins/chemistry , Membranes/chemistry , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Protein Binding , Protein Domains , Protein Multimerization , Receptor, EphA2/chemistry , Sequence Homology , Tumor Cells, Cultured
18.
J Biol Chem ; 296: 100149, 2021.
Article En | MEDLINE | ID: mdl-33277361

The impact of the EphA2 receptor on cancer malignancy hinges on the two different ways it can be activated. EphA2 induces antioncogenic signaling after ligand binding, but ligand-independent activation of EphA2 is pro-oncogenic. It is believed that the transmembrane (TM) domain of EphA2 adopts two alternate conformations in the ligand-dependent and the ligand-independent states. However, it is poorly understood how the difference in TM helical crossing angles found in the two conformations impacts the activity and regulation of EphA2. We devised a method that uses hydrophobic matching to stabilize two conformations of a peptide comprising the EphA2 TM domain and a portion of the intracellular juxtamembrane (JM) segment. The two conformations exhibit different TM crossing angles, resembling the ligand-dependent and ligand-independent states. We developed a single-molecule technique using styrene maleic acid lipid particles to measure dimerization in membranes. We observed that the signaling lipid PIP2 promotes TM dimerization, but only in the small crossing angle state, which we propose corresponds to the ligand-independent conformation. In this state the two TMs are almost parallel, and the positively charged JM segments are expected to be close to each other, causing electrostatic repulsion. The mechanism PIP2 uses to promote dimerization might involve alleviating this repulsion due to its high density of negative charges. Our data reveal a conformational coupling between the TM and JM regions and suggest that PIP2 might directly exert a regulatory effect on EphA2 activation in cells that is specific to the ligand-independent conformation of the receptor.


Cell Membrane/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Multimerization , Receptor, EphA2/chemistry , Receptor, EphA2/metabolism , Binding Sites , Humans , Protein Binding , Protein Conformation , Protein Domains , Signal Transduction
19.
Proc Natl Acad Sci U S A ; 117(36): 21896-21905, 2020 09 08.
Article En | MEDLINE | ID: mdl-32843347

Cholesterol is an integral component of eukaryotic cell membranes and a key molecule in controlling membrane fluidity, organization, and other physicochemical parameters. It also plays a regulatory function in antibiotic drug resistance and the immune response of cells against viruses, by stabilizing the membrane against structural damage. While it is well understood that, structurally, cholesterol exhibits a densification effect on fluid lipid membranes, its effects on membrane bending rigidity are assumed to be nonuniversal; i.e., cholesterol stiffens saturated lipid membranes, but has no stiffening effect on membranes populated by unsaturated lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). This observation presents a clear challenge to structure-property relationships and to our understanding of cholesterol-mediated biological functions. Here, using a comprehensive approach-combining neutron spin-echo (NSE) spectroscopy, solid-state deuterium NMR (2H NMR) spectroscopy, and molecular dynamics (MD) simulations-we report that cholesterol locally increases the bending rigidity of DOPC membranes, similar to saturated membranes, by increasing the bilayer's packing density. All three techniques, inherently sensitive to mesoscale bending fluctuations, show up to a threefold increase in effective bending rigidity with increasing cholesterol content approaching a mole fraction of 50%. Our observations are in good agreement with the known effects of cholesterol on the area-compressibility modulus and membrane structure, reaffirming membrane structure-property relationships. The current findings point to a scale-dependent manifestation of membrane properties, highlighting the need to reassess cholesterol's role in controlling membrane bending rigidity over mesoscopic length and time scales of important biological functions, such as viral budding and lipid-protein interactions.


Cell Membrane/chemistry , Cholesterol/metabolism , Membrane Lipids/chemistry , Biomechanical Phenomena , Cell Membrane/metabolism , Cholesterol/chemistry , Magnetic Resonance Spectroscopy , Membrane Fluidity , Membrane Lipids/metabolism , Molecular Dynamics Simulation
20.
Commun Biol ; 3(1): 95, 2020 03 03.
Article En | MEDLINE | ID: mdl-32127636

The practical application of nanoparticles (NPs) as chemotherapeutic drug delivery systems is often hampered by issues such as poor circulation stability and targeting inefficiency. Here, we have utilized a simple approach to prepare biocompatible and biodegradable pH-responsive hybrid NPs that overcome these issues. The NPs consist of a drug-loaded polylactic-co-glycolic acid (PLGA) core covalently 'wrapped' with a crosslinked bovine serum albumin (BSA) shell designed to minimize interactions with serum proteins and macrophages that inhibit target recognition. The shell is functionalized with the acidity-triggered rational membrane (ATRAM) peptide to facilitate internalization specifically into cancer cells within the acidic tumor microenvironment. Following uptake, the unique intracellular conditions of cancer cells degrade the NPs, thereby releasing the chemotherapeutic cargo. The drug-loaded NPs showed potent anticancer activity in vitro and in vivo while exhibiting no toxicity to healthy tissue. Our results demonstrate that the ATRAM-BSA-PLGA NPs are a promising targeted cancer drug delivery platform.


Acids/pharmacology , Antineoplastic Agents/administration & dosage , Drug Carriers , Nanoparticles/chemistry , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Carriers/therapeutic use , Drug Compounding , Drug Delivery Systems/methods , Drug Liberation/drug effects , Drug Stability , Female , HeLa Cells , Humans , Hydrogen-Ion Concentration , MCF-7 Cells , Mice , Mice, Inbred C3H , Nanoparticles/therapeutic use , Peptide Fragments/chemistry , Peptide Fragments/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Serum Albumin, Bovine/chemistry , THP-1 Cells , Xenograft Model Antitumor Assays
...